Gounder Research Laboratory: Chemistry and Catalysis of Nanoscale Materials

Rajamani Gounder

rgounder@purdue.edu

Larry and Virginia Faith Associate Professor of Chemical Engineering, Purdue University

Purdue Process Safety and Assurance Center (P2SAC) Meeting
May 17, 2021 – West Lafayette, IN

Overview of today's presentation

- Overview of research group, interests and capabilities, collaborations
- Overall project vision: Prevention through design (PTD) concepts in catalysis and reaction engineering (CRE)
- Brief summary of first project in P2SAC (safer (ep)oxidation catalysis)

- Current project in P2SAC: solid acid alternatives to alkylation (motivation, goals)
- Catalytic chemistry: complementarity of alkylation and oligomerization catalysis
- Olefin chain-growth (e.g., oligomerization) is a coupled reaction-diffusion process
- Technical progress:
 - Synthetic methods to influence catalyst properties
 - Data on oligomerization at low conversion (fundamental studies)
 - Data on oligomerization at high conversion (process feasibility data)
- Current workplan for CY 2021, future ideas in CRE/PTD

Petrochemical refining is driven by zeolite-based technologies

Energy and environmental applications driven by zeolite catalysis

LONG-TERM GOAL: A collaborative project that can leverage the expertise of more than 1 faculty in Purdue ChE

Raj Gounder

Fabio Ribeiro

PhD-level projects

Jeff Greeley

Jeff Miller

Brian Tackett (new assistant professor joining fall 2021) electrochemistry/catalysis, CO₂ reduction

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

CHEMICALS: Synthesis of solid Lewis acids for safer catalytic oxidation reactions

Example: Propylene oxide (PO) monomers

- 7.7 million tons/yr produced worldwide in 2012 (9.5/yr in 2016)
- BASF/Dow Chemical make PO using Ti-zeolites (HPPO process)

framework Ti desired

non-framework TiO2 undesired

Unwanted H₂O₂ decomposition to O₂ occurs on non-framework TiO₂ sites, potential overpressures / explosions

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

CHEMICALS: Synthesis of solid Lewis acids for safer catalytic oxidation reactions

Major accomplishments of this project

Research Products

- Publications (10)
- Presentations (67)
- U. S. Patents (1 issued, 1 patent pending)

Mentoring / Education Outcomes

- Postdoctoral scholars (1)
- PhD students (4) -> 1 faculty, 3 postdocs (1 NL, 2 academia)
- PhD student (1) affiliated with project and engaged with P2SAC
- Undergraduate students (5) -> 2 are now PhD students

Other Outcomes

- Internal (Purdue) and External Research Collaborations
- Laboratory/Instrumentation Safety (Publications, and Instrument Design Adopted at Other Universities)

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

REFINING: Synthesis of solid Brønsted acids to practice carbon chain growth chemistry

Example: Alkylation for high-octane gasoline

- 2 million barrels/day produced worldwide in 2016
- <u>Several refiners</u> make alkylate using H₂SO₄ or HF liquid acids
- Last major refinery/petrochemical process using strong liquid acids

- Numerous well-documented process safety incidents with HF acid handling, storage/release, usage that motivate a PTD approach
- Some potential alternatives are emerging:
 - Solid Lewis-Brønsted superacids
 - AlkyClean® (Albermarle, CB&I, Neste Oil): 2700 barrels/day
 - ISOALKY (Chevron -> Honeywell UOP): ionic liquids

VISION: Prevention through catalyst design. Design catalysts to allow practicing safer industrial processes, and eliminating safety/occupational hazards.

REFINING: Synthesis of solid Brønsted acids to practice carbon chain growth chemistry

Example: Alkylation for high-octane gasoline

- 2 million barrels/day produced worldwide in 2016
- <u>Several refiners</u> make alkylate using H₂SO₄ or HF liquid acids
- Last major refinery/petrochemical process using strong liquid acids

- Project Goals: Basic research on solid acid hydrocarbon chain-growth catalysts
 - Research needs: Synthesis methods and structure-property relations to design catalysts with higher stability (lifetime) and selectivity
 - Minimize coke precursors (deactivation)
 - Improve hydride transfer selectivity (toward alkylate)
 - Track 1: Design of solid Brønsted acid catalysts (zeolites, oxides)
 - Controlled local active site distributions (proximity) and densities (Si/Al)
 - Controlled diffusion properties (crystallite size, Thiele moduli, ...)
 - Track 2: Catalyst Testing (low conversion for fundamental work, high conversion for feasibility)

Alkylation Catalysis: Background and Motivation

Reaction:

- Alkylation of isobutane with light (C_3-C_5) olefins to make multiply-branched C_7-C_9 alkanes with high octane number (gasoline)
- Alkylation Mechanism (simplified):

Weitkamp and Traa, Catal. Today 49 (1999) 193-199

Propagated by intermolecular hydride transfer reactions

Promoted by stronger acids, higher acid site densities

 Catalyst deactivation: loss in conversion / selectivity to alkylate (and formation of oligomers)

Fig. 2. Conversion of a liquid isobutane/1-butene mixture on a CeY-98 zeolite in a fixed-bed reactor (T=80°C, p=31 bar, liquid feed rate=7.5 cm³/h, mass of catalyst=1.4 g, $\dot{n}_{\rm isobutane}/\dot{n}_{\rm 1-butene}=11:1$), after [13–15].

Complementarity between alkylation/oligomerization reactions: connections in fundamental knowledge (kinetics/mechanisms, site requirements, etc.)

Olefin oligomerization (and chain-growth processes) in acid zeolites are inherently a coupled reaction-diffusion process

Fundamental experimental investigations of coupled reactiondiffusion phenomena in zeolites

Crystallite length, active site density influence diffusion

Catalyst Reaction properties property

$$\Phi^2 = \frac{ [H^+] L^2}{D_e} \times [k]$$

$$(n = 1)$$

Materials design approaches:

- Vary crystallite size
- Al spatial distribution (toward crystallite exterior)

H-MFI (0.5 nm diam.) Si/AI = 13

12 unique T-Sites 10-MR channels (~0.55 nm)

Intersections (~0.70 nm)

Current progress to date: Installation and safety / performance validation of a high pressure/conversion reactor in FlexLab

Micromeritics Microactivity Effi Reactor

Status update

- Installed and validated a benchtop-scale reactor (1-10 gram catalyst scale) to perform hydrocarbon reactions at industrial conditions and high conversions
- Housed in FlexLab, primarily designed for olefin oligomerization (CISTAR)
- Also capable of other hydrocarbon chemistries

Goals

- Assess the practical functionality (and generate data for patents) of Purdue-developed catalysts for hydrocarbon reactions
- Characterize the product slate from catalysts at high conversions
- Evaluate long-term (eg, days-to-weeks) catalyst behavior (deactivation, time-on-stream product profiles) and regeneration

Current progress to date: Installation and safety / performance validation of a high pressure/conversion reactor in FlexLab

Micromeritics Microactivity Effi Reactor

Operational Features

- Automated and programmable for long-term unintended operation
- Max P: 100 bar, Max T: 800 °C
- Heated enclosure and transfer lines to prevent liquid condensation and send effluent to GC-MS (online analysis)
- Gas-liquid-liquid separator capable of separating two immiscible liquids (offline analysis)

Safety Features (will automatically shut-off temperature / flow)

- Flammable gas detectors (2 for H₂, 2 for hydrocarbons) to identify leaks inside and outside the heated box
- Loss of air-flow in lab room and exhaust/ventilation system
- Over-temperature and over-pressure alarms and safety shut-offs

Acknowledgements

(Oxidation project) (Other P2SAC research)

- Jason Bates (alumni)
- Bereket Bekele
- Elizabeth Bickel
- Brandon Bolton
- Bonn Cao
- Tania Class Martinez
- Michael Cordon (alumni)
- John Di Iorio (alumni)
- Ricem Diaz Arroyo
- Sopuruchukwu Ezenwa
- Jamie Harris (alumni)
- Casey Jones
- Ravi Joshi (alumni)
- Phil Kester (alumni)
- Siddarth Krishna (postdoc)
- Trevor Lardinois
- Songhyun Lee (postdoc)

(Alkylation project) (ARSST)

- Andrew Mikes
- Claire Nimlos (alumni)
- Ángel Santiago Colon
- Juan Carlos Vega-Vila (alumni)
- Laura Wilcox
- Young Gul Hur (PD alumni)
- Jackie Hall (UG alumni)
- Alisa Henry (UG alumni)
- YoonRae Cho (UG alumni)
- Yury Zvinevich

- Fabio Ribeiro, Jeff Miller, Nick
 Delgass, Viktor Cybulskis (grad)
- Jeffrey Greeley, Brandon Bukowski (grad)
- David Flaherty (Illinois)
- Christophe Copéret (ETH-Zürich)

Financial Support and Discussions

